
Searching

Here is a very common problem: we have a list L of data and we want
to find whether a particular value x is in this list. We will represent
this with function search(x, L) that returns the index of x in L if there is
such an index, and it returns -1 if x is not in L. If x is in L multiple
times we want search to return some index of x, but not necessarily
the first index.

One obvious solution is called Linear Search. We compare x to the
first element of L, the second element, and so forth. If we find a
match we return its index. If we get to the end of the list without
finding a match we return -1:

def LinearSearch(X, L):
n = len(L)
for i in range(0, n):

if x == L[i]:
return i

return -1

What is the largest number of comparisons this could do in
searching for x in a list of size n?

A) log(n)

B) n

C) n2

D) I don't know. Leave me alone.

How long does LinearSearch take for a list of size n? That depends on
how lucky we are; we might get a match on the first comparison.
Many people rely on worst-case analyses. The worst case if x is
actually in L is that we only find x after n comparisons. Of course, if x
is not in L we must do n comparisons before we can return -1. The
worst case running time of LinearSearch is O(n) whether x is in L or
not.

There is another solution to the search problem. This one requires L
to be sorted. If L is sorted we can immediately go to the middle of
the list; suppose this is at index mid. If x == L[mid] we return mid and
we are done. If x < L[mid] we know x is in the first half of L (because L
is sorted), so we can throw out all of the elements at index mid or
higher; if x > L[mid] we can throw out all elements index mid or lower.
This continues until we find x or L has no remaining elements.

In practice it takes too long to "throw out" elements from a list so
instead we keep variables low and high that give the smallest and
largest indexes of the portion of L that might contain x

Here is a recursive helper function that does all of the work:
def BSearch(x, L, low, high):

if high < low:
return -1

else:
mid = (low+high)//2
if x == L[mid]:

return mid
elif x < L[mid]:

return BSearch(x, L, low, mid-1)
else:

return BSearch(x, L, mid+1, high)

The BinarySearch function itself just calls BSearch:

def BinarySearch(x, L):
return BSearch(x, L, 0, len(L)-1)

How do we analyze BinarySearch? Note that each time BSearch
recurses it cuts in half the region of L it is considering. If L starts with
n elements, how many times can we cut it in half before we get down
to one element? That is the reverse of the question: how many times
can we double a number that starts at 1 before it gets up to n? Either
way the answer is log2(n). That is what a logarithm is: the exponent
you need to raise its base to in order to get n. So the worst-case
running time of BinarySearch is O(log(n))

So which is better -- LinearSearch or BinarySearch? LinearSearch is
O(n), BinarySearch is O(log(n)). Suppose we have a really large list
with a million (106) entries. LinearSearch will do up to a million
comparisons. BinarySearch will do log2(106), which is about 20
comparisons. There is no contest; BinarySearch is vastly better.

Of course, BinarySearch requires the list to be sorted. To do a small
number of searches it would take longer to sort L and then use
BinarySearch than to just use LinearSearch.

